The monuments of the Athenian Acropolis interest both the Greeks and the international public. It is therefore taken for granted that we should preserve them and highlight them. The temples on the Acropolis Rock are not simply part of the architectural heritage of the modern Greeks; they are much more. They hold a unique significance for western civilization because they were the ideal architectural models both during antiquity and in the post-Renaissance era. They are the evidence of a cultural apogee that humanity has very seldom known.

The intentions of those who built the Parthenon, the Propylaia, the Erechtheion and the temple of Athena Nike are well known:
They were built for the gods – perfect in terms of harmony and art.
They were built for the ages – perfect as constructions.
They were built for the prestige of the city-state – at an impressive scale with a wealth of decoration.

The confluence of many factors in the 5th century B.C. brought Athens a cultural climax without precedent. Democratic institutions, social cohesion, a vibrant economy, an influx of mastic marble workers from the Aegean islands and the presence of talented architects and sculptors combined with a zenith in other arts and crafts, as well as in politics, philosophy and theatre, created this cultural culmination.

The responsibility for preserving, managing and presenting the monuments of the classical period is tremendous.

In 1975, under the initiative of Prime Minister Constantine Karamanlis and Minister of Culture Konstantinos Trypanis, the Committee for the Conservation of the Acropolis Monuments (ESMA) was constituted and has been responsible for studies and works on the Acropolis monuments since then. In 1975 the error made in the earlier restorations under the programs of Nikolaos Balanos, which was the execution of the work by only one person, was not repeated. On the contrary, a multidisciplinary committee and a system for double-checking its decisions were set up. ESMA is indeed multidisciplinary, with archaeologists, architects, civil engineers, material conservation chemists and conservators all participating in its work. The studies are supervised by ESMA and the Central Archaeological Council and are published to the international community of experts at international meetings convened to this end.

In 1999 the Technical Office of ESMA was transformed into an autonomous service with the aim of accelerating and completing the projects. The Acropolis Restoration Service (YSMA) provides a comprehensive system of administrative and financial services under its own Director.
The following case types can be identified:

a) **Rescue interventions**, such as consolidation, structural restorations or removal of art works from the monument as a last resort for their preservation

b) **Conservation interventions** both for the monuments themselves and for their proper use and

c) **Interventions to enhance their values**, such as restoration and possibly partial reconstruction and landscaping.

Experience has shown that the preservation of all the values expressed by a monument requires minimal interventions as well as their maximum possible restriction. It has also shown that it is based on knowledge. On the one hand, the architects handling the project should study the monument itself - its history, its materials and the reasons that necessitate intervention. On the other hand the community must accept this intervention, on the basis of its education and direct information about the specific project, as well as the cost of its realisation.

In Greece and the countries around the Mediterranean in particular, many monuments of antiquity have been preserved. These are the visible remains of a great civilisation that was revived during the Renaissance and became the basis of modern Western civilisation. These ancient monuments, with the exception, perhaps, of the theatres, have lost their original function and their only “function” today is as exhibits. During interventions undertaken on them, there must be a balance between the two requirements - to retain, on the one hand, the vestiges of their historical adventures and their ruinous character and, on the other hand, to improve their form in order to highlight their original artistic value as much as possible. It is obvious that this balance is not easily achieved and that it differs from monument to monument.

The conservation and restoration of our architectural heritage, comprised of ancient and historical monuments and sites, is considered self-evident in the modern world. The preservation of cultural assets that also belong to the built environment constitutes a cultural activity in itself.

It is apparent that in recent years appreciation of this cultural wealth is continuously on the rise and endeavours to preserve and promote it are multiplying in the same way as those that focus on the natural environment. This is because in both cases the objective is quality of life.

The preservation of old and historic buildings in cities or regions threatened by the spread of a formless, standardised and industrialised new architecture, is a kind of resistance against the levelling and homogenisation of our daily lives. Diversity and history bear a direct relationship to quality of life, as well as to the identity of a city, region or country.

The endeavour to preserve cultural heritage requires special care and funds, as well as expert and experienced administrators. The restoration of monuments is based on a multidisciplinary approach. It aims to retain their values unchanged, to protect them from the wear and tear of time and to retain a form that expresses the spirit of their era. All these issues have been addressed theoretically in Europe since the early 19th century and have been tested in hundreds of cases so that today we have evaluation systems and work methods that meet with general acceptance.
The misfortunes of time over a period of 2500 years were responsible for the continuous deterioration of the monuments of the Athenian Acropolis. Whatever the monuments suffered, however, is due more to the actions of people and less to the forces of nature. The major causes of the damage are:

- Fire and vandalism to the Parthenon in late antiquity. Poorly executed repairs later on.
- Conversion of the Parthenon and the Erechtheion to churches, in the 6th century. Impact of the new function.
- Conversion of the Propylaia to a Bishop’s residence and later to a fortified palace.
- Conversion of the Parthenon to an Ottoman mosque in 1458.
- Gunpowder explosion in the Propylaea in 1687.
- Looting of sculptures by Lord Elgin, 1801-1804.
- Damage during the Greek War of Independence due to bombardment and looting of metals.
- Failures of the 1896-1940 restoration programs.

From the time of Pericles to the present day, there has never been systematic conservation and consolidation of the monuments. It should also be noted that the interventions of the 19th and early 20th centuries had as their aim, aesthetic restoration and reconstruction, rather than the conservation and consolidation of the monuments.

Many of the problems faced today on the Acropolis are due in large degree to the failure of the interventions between 1896 and 1940, for which N. Balanos was responsible. The failure is due to the widespread use of iron in the restoration work. Beams, fasteners, connecting elements and so on, made of ordinary commercial iron, were used and were incorporated with the aid of plain cement into the ancient marble architectural members, which were chiselled wherever convenient.

The results were disastrous; oxidation and subsequent expansion of the iron elements resulting in the fracturing of the marble into which they had been incorporated. During the 1960s, the damage was visible everywhere, with fractures to the marble and pieces falling off. The Balanos restorations were considered very good in terms of aesthetics and completion of the continuity of the forms, but proved disastrous in terms of construction. Where were these carried out?

- The Propylaia: The east porch and the marble coffered ceilings of the central building.
- The Erechtheion: The ceilings of both porches, the Caryatids and the north porch, as well as the side walls.
- The Parthenon: The two narrow façades of the temple, a large part of the north colonnade, the inner west porch and two walls of the cela.

During the 1960s however, there appeared a new factor in the rapid deterioration of the monuments. This was the city’s atmospheric pollution which, in combination with moisture, began to affect the marble surfaces and transform them slowly into soluble gypsum. This created an immediate danger to the sculptures that adorn the monuments and to the inscriptions that remained in the open air.

All these factors led to the need for intervention on all four of the Acropolis monuments. The removal of the rusted iron from the old restorations and the transfer of the sculptures to the enclosed space of the Museum for their protection became a pressing duty. These actions were followed firstly by the use of new supports and connecting elements in a non-corrosive metal, titanium, and secondly, the addition of copies made from artificial stone, in the place of the original sculptures.

During the intervention, however, the ancient monuments’ many other requirements were revealed: there were multiple fractures in many architectural members due to past fires, earthquakes, explosions and bombardments. Many architectural members had also been wrongly positioned, the result of the works between 1896 and 1940, during which Balanos placed similar members in random positions for the sake of convenience.

During the preparation of the studies it became clear that this was a unique opportunity to undertake the first systematic conservation of the monuments and to concurrently advance their restoration, that is, to reintegrate architectural members (or parts of them) hitherto lying on the ground, into the four monuments. The rescue works were thus combined with other works, which aimed to enhance the entire Acropolis complex.
Corrosion of marble due to microorganisms.

Pigeon droppings. Pitting erosion.

Expansion of cracks due to parasitic vegetation.

Displacement of the drums of a Parthenon column due to an earthquake.

Expansion of cracks due to frost.

Thermal fracture to a column from the pronaos of the Parthenon.

Thermal fracture to a column from the pronaos of the Parthenon.

Marks from the violent hacking of the figures on metope 10 of the Parthenon, a result of fanaticism against the ancient religion.

Expansion of cracks due to swelling of iron elements.

Traces of a medieval inscription.

Traces from cannon balls and bullets on a column on the west side of the Parthenon.

Traces of a medieval inscription.

Marks from the forcible extraction of lead for the production of bullets.

Surface created by the sawing of stone from the Parthenon frieze by Lord Elgin’s workmen.

Various deposits, a result of atmospheric pollution. Marble crystals that have lost their cohesion and form a darkened crust due to soot and dust can be discerned.

Traces of the violent hacking of the figures on metope 10 of the Parthenon, a result of fanaticism against the ancient religion.

Poor reuse of ancient members. Four sections of different column capitals combined to form one.
The principles of the Acropolis restoration works were formulated as early as 1975, and are based on the values which we attribute to ancient and historic buildings as cultural assets.

The Venice Charter is an internationally recognised document of conduct respected by almost all countries from 1964 to today. The articles of the Charter ensure the preservation of the values that we recognise in monuments, both in their management and also during interventions on them for their restoration, preservation, and analysis.

Buildings protected by law, as cultural assets, possess artistic value – something self-evident with regard to the Acropolis – which cannot be compromised. However, they are also buildings with historical and scientific value, that is, they comprise evidence of history. They are a testament not only of the period they were constructed, but of all periods following. Even the destruction and deterioration they have been subjected to, have historical value as they testify to the adventures of the monuments through the ages.

The functional values, serving the present needs of society, are also respected. Today, the sole function of the Acropolis in particular, is as an exhibit; we should regard this term in a very broad sense.

In terms of environmental values we need to view the Acropolis Rock and its monuments as a valuable feature of the Athenian urban landscape.

In terms of emotional values we should consider those special relationships that connect the Acropolis monuments with most Greeks’ sense of national identity. All of the above are covered by the Venice Charter and concern our entire historical and cultural built environment. However, in the case of the exceptionally valuable monuments of the Acropolis, ESMAs established, in 1975, certain additional principles that are applicable only to ancient Greek monuments constructed of carved stone or marble, and with which, to date, it has compiled rigorously and consistently.

a. Reversibility. In other words, the possibility of returning the monument (or a section of the monument) to the state it was in before our intervention. This is achieved in two ways: firstly, with respect for the ancient matter and secondly, with systematic documentation before and during the intervention.

Indeed, in contrast with the “Balanos way”, an ancient member is never chiselled, and the small sockets that are absolutely necessary for the titanium connecting elements are limited exclusively to cracked surfaces; they are never made on ancient carved surfaces. A special technique was introduced in such cases when new marble was to be fitted to mutilated marble architectural members (see leaflet no. 4). The documentation, which includes accurate drawings and photographs of the members before, during and after each intervention allows not only for control of the project but also for historically valuable research regarding members integrated into the final complete form of the monument.

b. Respect for the self-sufficiency and structural role of each architectural member. During the intervention, all marble members are considered autonomous works of art and are restored, where necessary, in order that they may resume their initial structural role and their initial strength within the overall construction. Based on this principle, of course, all misplacement of architectural members that had occurred in earlier restorations (such as the blocks of the Erechtheion’s side walls) are now being corrected.

c. Limitation of the interventions to the absolutely necessary. In no way do we wish to reconstruct sections of the monuments that have been destroyed. The additions of new marble or entire new architectural members take place only when necessary to consolidate or support original ancient members. The monuments retain their ruined character which testifies to their historical journey, but at the same time their readability is discreetly improved.

d. Transparency. In line with current international principles, all public projects must be accessible to citizens. In particular, works related to the conservation and display of cultural assets, such as ancient and historical monuments which are of special interest, must be presented to the public in every possible way. The Committee for the Conservation of the Acropolis Monuments and the Acropolis Restoration Service have addressed this general, modern requirement to make its work public, through publications, newsletters, exhibitions, films and educational programs, and mainly through the international meetings of experts which it has convened.
The Acropolis as a cultural asset of worldwide fame, receives thousands of visitors daily.

The Greek flag on the Acropolis connects its monuments with the feelings of Greeks for their country. (T. S.)

Systematic measurements and photographs of the monuments are taken before every intervention.

Documentation.

Byzantine inscription of the 12th century. Historical testament of the Acropolis during the Byzantine period.

Reversibility. Using appropriate technical methods fragmented ancient marble and supplements are joined together without necessitating any chiselling.

The south side of the Erechtheion. Correction of earlier misplacement of wall blocks, with the addition of new marble where necessary.

The north side of the Erechtheion. Limitation of the addition of new marble to the absolutely necessary.

The Acropolis and its Museum viewed from the south, as elements of Attica’s built environment.

The Acropolis and its Museum viewed from the south, as elements of Attica’s built environment.

Transparency of the activities. Publication of studies relating to the restoration and publications intended for public information and education. (T. S.)
The characteristic construction and structure of ancient buildings forms the basis of the restoration works. These buildings, regardless of size, have been constructed of marble carved into discrete architectural members, without the use of mortar. The strength of the building is due to the perfect contact between the members, and to small iron connecting elements which did not rust due to the use of lead sheathing (whereby molten lead was cast between the connecting element and the stone). This system gives them significant resistance to earthquakes.

By group (column drums, architraves, cornices and so on) these members appear similar, but in reality they have slight differences in size and cuttings in different positions for anchoring the connecting elements. These few details allow us to determine the original position of both the members that have fallen down and the members that have been misplaced, without the possibility of error. The architect responsible for the project needs to take measurements of great precision and be familiar with the ancient “syntax” of the structure of the architectural members.

The main types of intervention used in the Acropolis works are:

Structural restoration which aims, on the one hand, to restore the architectural members to their original strength and, on the other, to restore the structural relationships between them, in particular the perfect bedding that ensured the cohesion of the whole. During structural restoration, sections of the monument are dismantled, any rusted iron elements from the earlier restorations are removed, and fragmented members are joined together while certain of these are supplemented with new marble. The supplements, the marble “copies” of a lost architectural member, are created by making a cast in marble with the aid of a pointing device or automatically with a sculpture copying machine. The fragments are joined together using titanium rods in places that are not visible. All the members are then reassembled without mortar, with the aid of titanium connecting elements.

Conservation of the surface of the stone is usually mild in nature and is designed to inhibit deterioration due to environmental conditions as well as to repair surface damage. It involves sealing of small cracks, removal of pollutants, recrystallisation and organic deposits using modern laser technology, and bonding of chips and microcracks. For ancient monuments in particular, conservation of the surface must be continuous.

The method followed during interventions on the monuments has been formulated internationally. We usually distinguish the following stages:

- **Documentation** Documentation collects, classifies and stores all kinds of information about the monuments, their history and the interventions conducted on them. Modern computer technology provided a strong stimulus to documentation through the possibility of performing immediate searches and combining information. A database was created on the Acropolis where drawings and photographs were entered, as well as all documents relating to the works of the last thirty years.

 - **Pathology** Analysis of the factors that caused the damage or deterioration.
 - **Research** Undertaken where the original form and the causes of the problem are not immediately visible. New ways to treat them are sought and other similar cases are studied. Members, or fragments of members, lying on the ground are studied and joined with others that belong together.

- **Proposals** Proposals are formulated using drawings, reports and research findings. They include time schedules, budgets and proposals regarding required infrastructure and personnel.

- **Proposal approval** Approval is granted by statutory bodies comprised of experts, aiming to limit, as far as possible, the errors that can be made by a single researcher.

- **Execution of the project** This also includes documentation of its intermediate stages. It is divided into programs that can run in parallel.

- **Self-protection and ongoing care of the monuments and site**, after completion of the project.

- **Writing and publication** of a scientific report on the project, also after its completion.

The ways in which interventions, whether mild or drastic, are carried out, are many. As a rule the same technology as that of the monument is employed and the materials are compatible with the original. At the same time, however, modern technology is used for the surface conservation of the marble, and also for the infrastructure of the work.

The Acropolis has an electromechanical team that designs, installs, maintains and repairs the mechanical equipment used in the restoration interventions (lifting and transportation machines, marble cutting machines), the portable power tools used in the works, and the infrastructure networks.

Among the machinery used to facilitate the execution of the works and improve the pace of work are bridge cranes, rotating cranes, suspension cramps and others. Many new machines and devices were created by the YSMA staff especially for the works, including equipment such as special platforms for joining together architectural members, a special marble cutter to create the fluting in the column drums, and a drill for making holes, that ends in a point and functions as a pantograph.
Resetting the cornice of the Parthenon’s east side.

Dismantling the Parthenon’s northeast sima with one of the lion-head pseudo-spouts.

Details of blocks III and VIII from the west frieze during conservation and cleaning using laser technique.

Cleaning of the west frieze in the laboratory using laser technique. (T.S.)

Mechanical cleaning of a marble surface.

Supplement of architectural members with new marble. Process of joining internal cracks. Tube system in a column of the Parthenon opisthoma, for injections of stabilising compound.

The hoisting crane at the SE corner of the Acropolis.

The rotating construction crane on the north side of the Parthenon.

Bridge crane on ground level rails at the Propylaea work-site.

Suspension cramps for architectural members.

Cutter for carving column flutes.

Pantograph for carving copies of architectural members.
RESTORATION AND VOCATIONAL EDUCATION

The Acropolis monuments restoration project is currently being carried out by the Acropolis Restoration Service (YSMA), with employees from various disciplines: archaeologists, architects, civil and chemical engineers, conservators, electricians, administrative personnel, information technology professionals, mould makers and casters, designers, photographers, and stone masons, who comprise the largest professional group.

Discuss these professions. Following the discussion, study the following excerpt from Plutarch (Pericles, XII, 2nd cent.), which describes the skills of the people who were employed on the construction of these major works at the time of Pericles:

"The materials to be used were stone, bronze, ivory, gold, ebony, and cypress-wood; the arts which should elaborate and work up these materials were those of carpenter, moulder, bronze-smith, stone-cutter, dyer, worker in gold and ivory, painter, embroiderer, embosser, to say nothing of the forwarers and furnancers of the material, such as factors, sailors and pilots by sea, and, by land, wagon-makers, framers of yoked beasts, and drivers. There were also rope-makers, weavers, leather-workers, road-builders, and miners. And since each particular art, like a general with his separate command, kept its own throng of unskilled and untrained labourers in compact array, to be as instrument unto player and as body unto soul in subordinate service, it came to pass that for every age, almost, and every capacity the city's great abundance was distributed and scattered abroad by such demands."

Compare the YSMA work-site with the ancient work-site. With your students, consider who would work for such a store, nothing of the forwarders and furnishers of the material, such as factors, sailors and pilots by sea, and, by land, wagon-makers, framers of yoked beasts, and drivers. There were also rope-makers, weavers, leather-workers, road-builders, and miners. And since each particular art, like a general with his separate command, kept its own throng of unskilled and untrained labourers in compact array, to be as instrument unto player and as body unto soul in subordinate service, it came to pass that for every age, almost, and every capacity the city's great abundance was distributed and scattered abroad by such demands. (Translation published in Vol. II of the Loeb Classical Library, edition 1916)

Discuss other professions that are not related to the execution of restoration works, yet relate to the promotion and preservation of monuments, since the conservation of cultural heritage is in part comprised of its management and preservation. Professionals who specialise in these areas include museologists, architects specialising in exhibition design, model makers, etc.

Museum and archaeological site shops can generate a great deal of revenue. With your students, consider who would work for such a store, for example, interior decorators, graphic designers and so on. Design some of the products that could be sold there. You can also consider the archaeological site and the museum as a Cultural Centre where parallel cultural events constantly run: lectures, conferences, concerts, festivals, film, theatre and so on.

In the context of vocational education you can also discuss occupations that are less familiar to students, such as those of the people involved in the lighting of monuments and archaeological sites. Galleries, cultural sites, monuments all have different lighting requirements. You can also visit the Acropolis Museum, where natural light is a key feature of the building.

THE "RESTORING THE ATHENIAN ACROPOLIS" TEACHER'S PACK TRAVELS.

Explore your area and adopt a local monument. Search for information about the monument in photographic archives, old family photos, the internet, and in local newspapers. Try to work out whether the principles that have been applied in the Acropolis restoration works have also been applied to your local monument. Are there similar problems? How are they being approached? You can work together with your local Ephorate of Antiquities in order to discuss the issues.

Create an educational kit like the one for the Acropolis, by taking similar photographs of your monument, and hold an exhibition of your photographs about the problems as well as past and present restoration works. You can conduct interviews with local residents in the form of a report and write a news article about the monument in your school newspaper. You can also consider whether the principles that have been applied in the restoration works at the time of Pericles:

"The Acropolis restoration works have also been applied to your local monument. Are there similar problems? How are they being approached? You can work together with your local Ephorate of Antiquities in order to discuss the issues."

Consider the monument as a focus for the development of your town. Focus on the cultural factors of economic development. You can organise the archaeological site, create a logo, design tickets, and create information leaflets about the site. Take your parents and relatives for a tour of the site. You can make proposals for the enhancement of the archaeological site and the creation of a shop on the site. Design an advertising campaign for the preservation of the local monument. Create a poster advertisement designed to persuade: a) local residents and b) the central government and the mayor, that restoration of the specific monument is a priority, and therefore it is worth spending a part of their limited budget on its enhancement.

In the same context you can consider issues of ethics in advertising, in connection to how the Parthenon has occasionally been used to advertise a particular product or a person. Finally, look for sponsors from the region and organise an event to raise money for the monument.
RESTORATION AND MODERN GREK LANGUAGE
In modern Greek language classes you can study restoration work terminology and the etymology of the words with the aim of enriching the vocabulary of the students. This vocabulary combines the quality of the ancient Greek language with the new words of modern technology. Many of these words, like many scientific terms, have been incorporated into foreign languages and the students could search for them.

You can organise debating competitions between students based on the theoretical issues generated by the restoration works. Ask students to create a book about the Acropolis restoration works. Students can write articles, illustrate the book, and design the front and back covers.

Students can also take on the role of journalists and conduct interviews, either real or imaginary, with members of the restoration team, or with visitors. They can then write up the articles for a newspaper. In parallel they can write a script about the works for radio news (where there is no picture) or for television (where the paper. In parallel they can write a script about the works for radio news (where there is no picture) or for television (where there is a picture) or a longer script for a document.

In modern Greek language classes you can study restoration work terminology and the etymology of the words with the aim of enriching the vocabulary of the students. This vocabulary combines the quality of the ancient Greek language with the new words of modern technology. Many of these words, like many scientific terms, have been incorporated into foreign languages and the students could search for them.

You can organise debating competitions between students based on the theoretical issues generated by the restoration works. Ask students to create a book about the Acropolis restoration works. Students can write articles, illustrate the book, and design the front and back covers.

Students can also take on the role of journalists and conduct interviews, either real or imaginary, with members of the restoration team, or with visitors. They can then write up the articles for a newspaper. In parallel they can write a script about the works for radio news (where there is no picture) or for television (where there is a picture) or a longer script for a document.

In modern Greek language classes you can study restoration work terminology and the etymology of the words with the aim of enriching the vocabulary of the students. This vocabulary combines the quality of the ancient Greek language with the new words of modern technology. Many of these words, like many scientific terms, have been incorporated into foreign languages and the students could search for them.

You can organise debating competitions between students based on the theoretical issues generated by the restoration works. Ask students to create a book about the Acropolis restoration works. Students can write articles, illustrate the book, and design the front and back covers.

Students can also take on the role of journalists and conduct interviews, either real or imaginary, with members of the restoration team, or with visitors. They can then write up the articles for a newspaper. In parallel they can write a script about the works for radio news (where there is no picture) or for television (where there is a picture) or a longer script for a document.

In modern Greek language classes you can study restoration work terminology and the etymology of the words with the aim of enriching the vocabulary of the students. This vocabulary combines the quality of the ancient Greek language with the new words of modern technology. Many of these words, like many scientific terms, have been incorporated into foreign languages and the students could search for them.

You can organise debating competitions between students based on the theoretical issues generated by the restoration works. Ask students to create a book about the Acropolis restoration works. Students can write articles, illustrate the book, and design the front and back covers.

Students can also take on the role of journalists and conduct interviews, either real or imaginary, with members of the restoration team, or with visitors. They can then write up the articles for a newspaper. In parallel they can write a script about the works for radio news (where there is no picture) or for television (where there is a picture) or a longer script for a document.

In modern Greek language classes you can study restoration work terminology and the etymology of the words with the aim of enriching the vocabulary of the students. This vocabulary combines the quality of the ancient Greek language with the new words of modern technology. Many of these words, like many scientific terms, have been incorporated into foreign languages and the students could search for them.

You can organise debating competitions between students based on the theoretical issues generated by the restoration works. Ask students to create a book about the Acropolis restoration works. Students can write articles, illustrate the book, and design the front and back covers.

Students can also take on the role of journalists and conduct interviews, either real or imaginary, with members of the restoration team, or with visitors. They can then write up the articles for a newspaper. In parallel they can write a script about the works for radio news (where there is no picture) or for television (where there is a picture) or a longer script for a document.

In modern Greek language classes you can study restoration work terminology and the etymology of the words with the aim of enriching the vocabulary of the students. This vocabulary combines the quality of the ancient Greek language with the new words of modern technology. Many of these words, like many scientific terms, have been incorporated into foreign languages and the students could search for them.

You can organise debating competitions between students based on the theoretical issues generated by the restoration works. Ask students to create a book about the Acropolis restoration works. Students can write articles, illustrate the book, and design the front and back covers.

Students can also take on the role of journalists and conduct interviews, either real or imaginary, with members of the restoration team, or with visitors. They can then write up the articles for a newspaper. In parallel they can write a script about the works for radio news (where there is no picture) or for television (where there is a picture) or a longer script for a document.

In modern Greek language classes you can study restoration work terminology and the etymology of the words with the aim of enriching the vocabulary of the students. This vocabulary combines the quality of the ancient Greek language with the new words of modern technology. Many of these words, like many scientific terms, have been incorporated into foreign languages and the students could search for them.

You can organise debating competitions between students based on the theoretical issues generated by the restoration works. Ask students to create a book about the Acropolis restoration works. Students can write articles, illustrate the book, and design the front and back covers.

Students can also take on the role of journalists and conduct interviews, either real or imaginary, with members of the restoration team, or with visitors. They can then write up the articles for a newspaper. In parallel they can write a script about the works for radio news (where there is no picture) or for television (where there is a picture) or a longer script for a document.
The Parthenon restoration work was divided into twelve programs. Initially, the interventions were only of a rescue character, but gradually evolved into interventions for the enhancement of the monuments and the archaeological site.

In the north colonnade, eight columns and their entablature, which had been misplaced, a total of 230 architectural members weighing 200 tons, were dismantled in order to be repaired and to be returned to their initial positions in the monument. All of the cement drums from the 1923-33 restoration were replaced with new ones of Pentelic marble. Most of the metopes were transferred to the Museum, while copies in artificial stone were set on the monument.

On the east side, 160 architectural members were dismantled. They underwent repairs and conservation work and were returned to their positions. All of the metopes were removed and transferred to the Museum, while on the monument they were replaced with copies of artificial stone.

Approximately 130 architectural members from the opisthonaos were dismantled, repaired and returned to their positions. All the frieze blocks were removed and transferred to the Museum, while copies in artificial stone were put in their place on the monument.

The Parthenon restoration work was divided into twelve programs. Initially, the interventions were only of a rescue character, but gradually evolved into interventions for the enhancement of the monuments and the archaeological site.

On the east side, 160 architectural members were dismantled. They underwent repairs and conservation work and were returned to their positions. All of the metopes were removed and transferred to the Museum, while on the monument they were replaced with copies of artificial stone.

The Parthenon restoration work was divided into twelve programs. Initially, the interventions were only of a rescue character, but gradually evolved into interventions for the enhancement of the monuments and the archaeological site.

In the north colonnade, eight columns and their entablature, which had been misplaced, a total of 230 architectural members weighing 200 tons, were dismantled in order to be repaired and to be returned to their initial positions in the monument. All of the cement drums from the 1923-33 restoration were replaced with new ones of Pentelic marble. Most of the metopes were transferred to the Museum, while copies in artificial stone were set on the monument.

Approximately 130 architectural members from the opisthonaos were dismantled, repaired and returned to their positions. All the frieze blocks were removed and transferred to the Museum, while copies in artificial stone were put in their place on the monument.

The Parthenon restoration work was divided into twelve programs. Initially, the interventions were only of a rescue character, but gradually evolved into interventions for the enhancement of the monuments and the archaeological site.

In the north colonnade, eight columns and their entablature, which had been misplaced, a total of 230 architectural members weighing 200 tons, were dismantled in order to be repaired and to be returned to their initial positions in the monument. All of the cement drums from the 1923-33 restoration were replaced with new ones of Pentelic marble. Most of the metopes were transferred to the Museum, while copies in artificial stone were set on the monument.

Approximately 130 architectural members from the opisthonaos were dismantled, repaired and returned to their positions. All the frieze blocks were removed and transferred to the Museum, while copies in artificial stone were put in their place on the monument.

The Parthenon restoration work was divided into twelve programs. Initially, the interventions were only of a rescue character, but gradually evolved into interventions for the enhancement of the monuments and the archaeological site.

In the north colonnade, eight columns and their entablature, which had been misplaced, a total of 230 architectural members weighing 200 tons, were dismantled in order to be repaired and to be returned to their initial positions in the monument. All of the cement drums from the 1923-33 restoration were replaced with new ones of Pentelic marble. Most of the metopes were transferred to the Museum, while copies in artificial stone were set on the monument.

Approximately 130 architectural members from the opisthonaos were dismantled, repaired and returned to their positions. All the frieze blocks were removed and transferred to the Museum, while copies in artificial stone were put in their place on the monument.

The Parthenon restoration work was divided into twelve programs. Initially, the interventions were only of a rescue character, but gradually evolved into interventions for the enhancement of the monuments and the archaeological site.

In the north colonnade, eight columns and their entablature, which had been misplaced, a total of 230 architectural members weighing 200 tons, were dismantled in order to be repaired and to be returned to their initial positions in the monument. All of the cement drums from the 1923-33 restoration were replaced with new ones of Pentelic marble. Most of the metopes were transferred to the Museum, while copies in artificial stone were set on the monument.

Approximately 130 architectural members from the opisthonaos were dismantled, repaired and returned to their positions. All the frieze blocks were removed and transferred to the Museum, while copies in artificial stone were put in their place on the monument.

The Parthenon restoration work was divided into twelve programs. Initially, the interventions were only of a rescue character, but gradually evolved into interventions for the enhancement of the monuments and the archaeological site.

In the north colonnade, eight columns and their entablature, which had been misplaced, a total of 230 architectural members weighing 200 tons, were dismantled in order to be repaired and to be returned to their initial positions in the monument. All of the cement drums from the 1923-33 restoration were replaced with new ones of Pentelic marble. Most of the metopes were transferred to the Museum, while copies in artificial stone were set on the monument.

Approximately 130 architectural members from the opisthonaos were dismantled, repaired and returned to their positions. All the frieze blocks were removed and transferred to the Museum, while copies in artificial stone were put in their place on the monument.

The Parthenon restoration work was divided into twelve programs. Initially, the interventions were only of a rescue character, but gradually evolved into interventions for the enhancement of the monuments and the archaeological site.

In the north colonnade, eight columns and their entablature, which had been misplaced, a total of 230 architectural members weighing 200 tons, were dismantled in order to be repaired and to be returned to their initial positions in the monument. All of the cement drums from the 1923-33 restoration were replaced with new ones of Pentelic marble. Most of the metopes were transferred to the Museum, while copies in artificial stone were set on the monument.

Approximately 130 architectural members from the opisthonaos were dismantled, repaired and returned to their positions. All the frieze blocks were removed and transferred to the Museum, while copies in artificial stone were put in their place on the monument.
The masterpiece of ancient Greek architecture was dedicated to the patron of Athens, goddess Athena, whose gigantic gold and ivory statue it housed. It is a monument of the Doric order with a perimeter colonnade. It has 8 columns at its narrow sides and a second inner row of 6 columns, as well as 17 columns at its long sides. Other two-story interior colonnades supported the roof of the cela, the back part of which formed a large rectangular independent room. The monument is considered to have achieved perfection of the Doric order, by virtue of its harmonious proportions, the hidden refinements of its architectural forms and its technical perfection. These factors, along with its great sculptural wealth, made the Parthenon famous even during antiquity. The architects of the great temple were Iktinos and Kallikrates. It was built under the general supervision of the famous statesman of the Athenian democracy, Pericles.

The temple was built during the period 447-438 B.C., during the apogee of Athenian democracy, and expressed not only the city’s respect for the divine but also the Athenians' cultural superiority over other Greek cities. Continuing the tradition of the Doric order, the Parthenon had statues on the pediments and high reliefs on the metopes. However, it also adopted an Ionic feature, the continuous frieze that ran around the cela in the uppermost zone, with a total length of 505 meters. It thus had an unprecedented architectural form and its technical perfection. These factors, along with its great sculptural wealth, made the Parthenon famous even during antiquity. The architects of the great temple were Iktinos and Kallikrates. It was built under the general supervision of the famous statesman of the Athenian democracy, Pericles. The temple was built during the period 447-438 B.C., during the apogee of Athenian democracy, and expressed not only the city’s respect for the divine but also the Athenians' cultural superiority over other Greek cities.

The Parthenon restoration work by ESMA from 1975, and after 1999, by YSMA, was divided into twelve programs and began in 1983 with the establishment of the work-site. It was preceded by the removal of the west pediment sculptures in 1977. The restoration programme for the east side, which was completed in 1991, is part of the rescue interventions. All the members of the two corner entablatures and all the metopes were removed and transferred to the Museum. On the monument base, which had been replaced by exact copies in artificial stone. The precise geometric form of the Parthenon's façade, which had been disturbed by the explosion in 1807 and an earthquake in 1810, was restored. In 1993, the fifth column from the east on the south side, which was in danger of collapse, was reinforced and the entire column from the second drum upwards was removed so that the lowest drum could be filled and restored to a stable state. The intervention on the western section of the building (epistoa, 1997-2004), was preceded by a rescue intervention on the east side, where Balanos had intervened, the removal of rusted metal elements, and the transfer of six metopes to the Museum as well as their replacement with copies in artificial stone. The extensive restoration of the east interior porch of the temple (the pronaos, 1995-2004), which had only one column in its place, comes under the interventions on the Parthenon. Two more columns were entirely restored and another three in part, using both the whole and fragmented colonnade material, that was collected from members lying on the ground. The carving of the flutes on the columns still remains to be done. In the domain of masonry work, all the masonry works were checked and underwent minor interventions: joining of chips and small fragments, cleaning of cracks, removal of organic and other deposits, and removal of recrystallised layers.

The intervention on the western section of the building (epistoa, 1997-2004), was preceded by a rescue intervention on the east side, where Balanos had intervened, the removal of rusted metal elements, and the transfer of six metopes to the Museum as well as their replacement with copies in artificial stone. The extensive restoration of the east interior porch of the temple (the pronaos, 1995-2004), which had only one column in its place, comes under the interventions on the Parthenon. Two more columns were entirely restored and another three in part, using both the whole and fragmented colonnade material, that was collected from members lying on the ground. The carving of the flutes on the columns still remains to be done. In the domain of masonry work, all the masonry works were checked and underwent minor interventions: joining of chips and small fragments, cleaning of cracks, removal of organic and other deposits, and removal of recrystallised layers.

The intervention on the western section of the building (epistoa, 1997-2004), was preceded by a rescue intervention on the east side, where Balanos had intervened, the removal of rusted metal elements, and the transfer of six metopes to the Museum as well as their replacement with copies in artificial stone. The extensive restoration of the east interior porch of the temple (the pronaos, 1995-2004), which had only one column in its place, comes under the interventions on the Parthenon. Two more columns were entirely restored and another three in part, using both the whole and fragmented colonnade material, that was collected from members lying on the ground. The carving of the flutes on the columns still remains to be done. In the domain of masonry work, all the masonry works were checked and underwent minor interventions: joining of chips and small fragments, cleaning of cracks, removal of organic and other deposits, and removal of recrystallised layers.

The intervention on the western section of the building (epistoa, 1997-2004), was preceded by a rescue intervention on the east side, where Balanos had intervened, the removal of rusted metal elements, and the transfer of six metopes to the Museum as well as their replacement with copies in artificial stone. The extensive restoration of the east interior porch of the temple (the pronaos, 1995-2004), which had only one column in its place, comes under the interventions on the Parthenon. Two more columns were entirely restored and another three in part, using both the whole and fragmented colonnade material, that was collected from members lying on the ground. The carving of the flutes on the columns still remains to be done. In the domain of masonry work, all the masonry works were checked and underwent minor interventions: joining of chips and small fragments, cleaning of cracks, removal of organic and other deposits, and removal of recrystallised layers.
Interventions were made on all four sides of the temple, in order to correct the errors of the earlier restoration interventions. A total of 720 architectural members were dismantled, which underwent repair, conservation and filling, where appropriate.

In the north and south walls of the temple misplaced members were returned to the positions they had occupied in antiquity, and the voids that were created in the monument’s structure were filled with members made entirely from new marble. The ceiling of the north porch and of the porch of the Caryatids were dismantled and the rusted beams from the earlier intervention were removed, after which they underwent conservation work and were reassembled.

The northeast corner of the temple regained the closed form of the hexastyle porch which it had in antiquity, as copies in artificial stone were set in the place of the Ionic column and overlying entablature, the originals of which are in the British Museum.

The five original Caryatids were removed and transferred to the Acropolis Museum in order to protect them from atmospheric pollution, while on the monument were placed copies of all six Caryatids in artificial stone.

The Erechtheion is the latest (421-406 B.C.) of the classical monuments on the Acropolis. Here were housed the diipetes xoanon, a wooden statue of the goddess Athena sent by Zeus (Dias in Greek); the "Sacred Tokens", the marks left by Poseidon's trident and Athena's olive tree; and altars for the worship of local chthonic deities. The complexity of the worship that took place and the steep angle of the natural rock dictated a likewise complex floorplan developed on two levels as well as the creation of four different façades. The temple was divided into two sections, with the eastern part dedicated to Athena Polias, patron of the city, and the western part to Poseidon and Erechtheus.

The Erechtheion suffered serious fire damage and was repaired around 25 B.C. During the early Christian period it was converted to a church. At that time, the interior space in the lower level was unified and an apse was added on the east side to house the Holy Bema. It is not known whether it continued to function as a church during the medieval period. During the Turkish occupation it was used as a residence. In the early 19th century Lord Elgin removed a column, one of the Caryatids and other architectural members that are currently held in the British Museum.

After the War of Independence, all post-antiquity additions were removed from the semi-ruined building and restoration interventions were undertaken during three periods (K. Pittakis, 1837-41; A. Paccard, 1845-47; N. Balanos, 1902-1908) which consolidated the building and restored its form in a manner that retained its ruinous quality yet approached its ancient character to a satisfactory degree.

The Erechtheion restoration work by ESMA (1979-1986) included both rescue and enhancement interventions on all four sides.

Included in the rescue interventions were the dismantling of the porch of the Caryatids, the south wall, a section of the west wall, the ceiling of the north porch and the north wall—a total of 720 architectural members. The aim was the removal of the rusted iron beams and connectors (clamps and dowels) from the Balanos restoration, the joining together of fragments and, occasionally, the tiling of architectural members with new marble in order to achieve their structural restoration.

The rescue interventions also include the transfer of the Caryatids to the enclosed, controlled environment of the Museum since it was considered that there was no other way to save them from the atmospheric pollution of Athens.

All architectural members were returned to the building apart from the Caryatids which were replaced with exact cast copies from artificial stone.

Included in the enhancement works is the replacement of many architectural members that in 1909 had been set in positions other than their original ones (in particular blocks from the building’s side walls), a project that was preceded by thorough research. Certain additions of new blocks were made where necessary.

The addition to the northeast corner of the temple of exact copies of the Ionic column and entablature members that are in the British Museum in cast artificial stone, is also part of the enhancement works. This latter work, which in any case is reversible, was considered necessary, on the one hand, in order to restore the closed hexastyle form of the temple’s façade and to increase its morphological legibility and, on the other hand, to ensure the stability of the entire colonnade in the case of a strong earthquake.

In the domain of conservation, systematic work was undertaken on the interior surface of the cela walls, on the five columns of the east porch and on the marble ceiling of the porch of the Caryatids.

New research conducted on the Erechtheion focused on the existence of narrow light openings in the north wall, the monument’s recent phase and the purely theoretical research on the Sanctuary of Pandrosus with its Ionic stoa.
On the east hexastyle porch, the intervention has reached the third column drum. Approximately 200 architectural members were dismantled, underwent repair, conservation and filling where appropriate and were reset in place.

Dismantling of an Ionic capital from the central hall. The Ionic capital, which Balanos had assembled from parts of four different capitals, was taken apart and the parts were placed in the Museum for protection.

Two new capitals, exact copies of the Ionic capitals from the central hall of the Propylaea, were carved entirely from new marble, and an Ionic column was completed with a new drum.

The coffered ceilings that had been previously restored were dismantled studied alongside the coffer and beam fragments on the ground, joined together, and reset in their original positions.

Setting in place of the two new Ionic capitals in the central hall of the Propylaea.

The carving of two new capitals and the coffered slabs, in conjunction with the resetting of restored architectural members from the superstructure, led to the restoration of a section of the Propylaea ceiling.
The architect Mnesikles conceived the idea of a majestic entrance to the Sanctuary of the Acropolis, which showed originality in both style and form. It not only housed the walls with the gates that secured the Sanctuary, but extended to a spacious hypostyle hall, which had façades with six columns and pediments facing both out from and into the Acropolis. Of the four halls which the architect conceived to accompany the central building and house the city’s ceremonial functions, only one was completed, situated to the left as one approaches and known today as the Pinakotheke (picture gallery) from its use during the Roman period, when paintings were exhibited there.

With his design, Mnesikles made use of the ascent towards the Rock, elevating the monumental façade of the building and forming with the side wings a reception area. He treated the order in a pioneering manner, as he added towering Ionic columns in two rows in the hypostyle hall, visible from the outside, to a building in the Doric mode, and created a majestic coffered ceiling entirely of marble. There was no sculptural decoration. The monument became the model for other propylae during the Hellenistic and Roman periods.

The building of the Propylaia started immediately after the Parthenon in 437 B.C. and came to a halt after six years due to the Peloponnesian War. Many details indicate that the building was never completed.

During the Byzantine period, minor changes were made to the Propylaia, which is presumed to have served as the residence of the bishops of Athens. A chapel was built east of the Pinakotheke.

Later, during the Frankish domination, changes were made to the fortifications with the closing of the intercolumniation of the façade and the creation of a side entrance with successive walls and gates. Also, in parallel with the fortification of the Acropolis, the Propylaia was converted to a ducal palace and a tall tower, which no longer survives, was raised at the south wing.

During the period of the Ottoman occupation, an ammunition explosion in 1580 left the central hall in ruins and destroyed part of the west façade. After the War of Independence, the demolition of the later fortifications and the sorting of the ancient material, consolidation works were undertaken (K. Pittakis, A. R. Ragabes) and later, the restoration works of N. Balanos. The latter restored (1909-1915) one of the Ionic columns of the central hall, and a section of the coffered roof and also made additions to the eastern Doric façade of the building. The works by Balanos had the advantages we are familiar with from the Parthenon as regards the new materials and the treatment of the ancient material. In 1953 A. Orladinos restored part of the south wing of the Propylaia and created the existing ascent towards the entrance, which is still used today.

The rescue operations on the Propylaia included the removal of the rusted iron elements from previous restorations, structural restoration and conservation of the architectural members, as well as their reintegration into the monument. This required the dismantling of all the members that had previously been restored, on the east porch, in its stoa, the Ionic columns, the coffered roof in the central hall, and the south wall of the east stoa. The intervention began in 1990, preceded by the removal of an architrave on the east façade that was in danger of collapse (1981-82), as well as the reproduction of the last of the columns, and the study of thousands of fragments scattered on the site or temporarily stored in a Byzantine cistern northeast of the monument. The identification, filling and joining together of many of these fragments allowed the recovery of many coffered slabs. The completion of another Ionic column was made possible with two new drums, while copies that were required of two new Ionic columns were carved from marble. The coffered roof of the east room was also extended.

A special problem arose from an Ionic capital from the previous restoration as it was comprised of fragments from four different capitals, and it was removed to the Museum.

As far as regards surface conservation of the marble, considerable work was undertaken on the shafts of the Ionic columns of the central hall, the orthostates of the Pinakotheke and on all ancient architectural members that had been dismantled.

The enhancement on the Propylaia included the extension of the restoration of the central hall’s marble roof, which was made possible by the recovery of many coffered slabs. The completion of another Ionic column was made possible with two new drums, while copies that were required of two new Ionic columns were carved from marble. The coffered roof of the east room was also extended.

There are further possibilities for even more substantial upgrades. The Propylaia with the partial or even complete restoration of the Pinakotheke, the east hall, and the restoration of the east portico, and the completion of the east wing, are further possibilities for future improvements. The Propylaia as the sole entrance to the Acropolis is a site of major architectural and historical significance, and its restoration is a testament to the ingenuity and skill of the ancient architects who created it.

The rescue operations also included the decoration of the monument with the installation of new coffered slabs. The completion of another Ionic column was made possible with two new drums, while copies that were required of two new Ionic columns were carved from marble. The coffered roof of the east room was also extended.

There are further possibilities for even more substantial upgrades. The Propylaia with the partial or even complete restoration of the Pinakotheke, the east hall, and the restoration of the east portico, and the completion of the east wing, are further possibilities for future improvements. The Propylaia as the sole entrance to the Acropolis is a site of major architectural and historical significance, and its restoration is a testament to the ingenuity and skill of the ancient architects who created it.
The temple of Athena Nike before and during its dismantling.

Sections of the archaic poros temple beneath the floor of the temple of Athena Nike.

The new metallic grid of the temple of Athena Nike.

The temple of Athena Nike during and after its reassembly.

Conservation work was carried out on the remains of the small archaic poros temple located 1.80 metres below the floor of the Ionic temple and accessibility to the underground site has been improved. A new metallic grid of stainless steel was created to replace the reinforced concrete slab. Following the restoration, the temple’s marble floor is now supported on this grid.

View of the relief parapet of the temple of Athena Nike in the Acropolis Museum. (T.S.)

The sculptural frieze was removed from the monument and is now protected in the Museum while its position on the monument has been taken by an exact cast replica in artificial stone. The fragments of the marble parapet that ran around the bastion were rejoined in the Museum.

Dismantling the capital and moving the shaft of a monolithic column from the temple of Athena Nike.

The monolithic columns on the temple’s east side were moved to the west, and vice versa, in order to return them to their original positions.

View of the relief parapet of the temple of Athena Nike in the Acropolis Museum. (T.S.)

The sculptural frieze was removed from the monument and is now protected in the Museum while its position on the monument has been taken by an exact cast replica in artificial stone. The fragments of the marble parapet that ran around the bastion were rejoined in the Museum.
The Temple of Athena Nike was constructed of pentelic marble on a bastion southwest of the Propylaea, between 427 and 424 BC. It is attributed to the architect Kallikrates. A monument of the Ionic order, it is of small scale and simple in form, with four columns on the east side and another four on the west. It bore rich sculptural decoration on the Ionic frieze (now in the Museum), on the pediments (only a few fragments of which have been preserved) and on the elaborate parapet depicting Athena and Nikai (personifications of victory), that ran around the bastion (sections of the parapet are now in the Museum).

During the medieval period, the temple was enclosed by the wall which rose above the bastion and was thus preserved in very good condition. By destroying the floor the Turks created a gunpowder store and in 1687 dismantled the temple and incorporated all its members into new fortifications on the west side of the Acropolis. Lord Elgin later removed and took a part of the frieze.

After demolition of the Turkish fortifications, the temple’s architectural members were collected and its restoration was undertaken on two occasions (a. by Ludwig Ross and Christian Hansen, 1835, and Kyriakos Pittakis, 1935-39, and Anastasios Orlandos, 1939-40). These interventions resulted in a significant loss of authenticity, due to the inexpert chiselling and fillings of various members, the use of cement, the misplacement of other members, and imperfect beddings between them. Bronze had been used for the connecting elements, rather than iron.

The only intervention of a rescue character in YSMA’s new programs for the temple of Athena Nike was the removal of the sculptured frieze (in 1998) and its protection in the enclosed space of the Museum, given that there were no rusted iron elements present from previous restorations.

During the new intervention undertaken as part of the monument’s enhancement, the entire temple was dismantled; conservation work was carried out on the remains of a small archaic limestone temple that had been discovered in situ 1.80 metres below; the system of iron beams that supported the northeast corner of the temple was replaced with a new stainless steel grid; restoration and preservation work was carried out on approximately 300 architectural members with the incorporation of new material, where appropriate; and a new restoration was undertaken, which also corrected the errors made in the positioning of the temple’s members during the previous interventions. Further restoration work was carried out on the cornices, simas and east pediment of the temple. An exact replica of the frieze, cast in artificial stone, was mounted in its place.

In terms of conservation, all the members of the temple were subjected to systematic conservation work prior to their placement.
THE ROCK, THE WALLS AND THE ENVIRONMENT

General view of the Acropolis from the Propylaea towards the east, before and after the creation of the walkway that protects the Rock from the footsteps of visitors.

The lift for people with special needs at the Acropolis.

(A. S.)

The natural rock below the southeast corner of the Acropolis wall. Wooden scaffolding for the consolidation work.

Aerial photographs of the area of the Arephorion before and after reburial of the monument to ensure its preservation.

(YSMA Archive)

Scattered architectural members and fragments carefully arranged in the area north of the old Acropolis Museum.

Scattered architectural members and fragments in the area southwest of the Erechtheion.

The natural rock and the walls of the Acropolis from the northeast and the south sides.
The Acropolis Rock is a monument of the natural environment, a landmark of the urban landscape of Athens, a historic monument in itself, an archaeological site with thousands of architectural members, and at the same time the immediate environment of the classical monuments. It should also be noted that the archaeological excavations of the previous two centuries removed ancient deposits, exposed the foundations of the buildings to degradation, and created a rough rock surface that hinders accessibility.

All these factors create complex management problems which were exacerbated by the setup of extensive work-sites for the needs of the works and by the rapid increase in the number of visitors in recent years.

The work-sites necessitated sheds, scaffolding, a lift at the south-east corner of the Rock, bridge cranes for all the monuments, and two cranes for the Parthenon. All these are temporary, but have aggravated the immediate environment of the monuments for almost thirty years.

For protection against the damage caused by the footsteps of visitors, entry into the monuments was forbidden and walkways of light concrete were created, made reversible with the insertion of plastic sheeting.

A typical example of a rescue intervention was the reburial of the "House of the Arrephoroi" where only the foundations made of poros-stone survived and which remained exposed to frost and wind, since its entire superstructure has been destroyed. It was considered that it could be preserved effectively only if it were reburied, after detailed documentation and study.

A major problem of the Acropolis archaeological site is the thousands of fragments of marble and poros architectural members and inscriptions, which are scattered across almost its entire area. An endeavour has been underway since 1980 to record, identify and protect these, and has yielded a significant number of members useful in the restoration of the monuments, and finds of great importance in terms of research or the enrichment of the Museum.

Studies on the technical restoration of the ground of the Acropolis when the works are completed, the work-site installations removed, and the scattered fragments stored in covered spaces, have already been undertaken.

The natural rock of the eastern and southern slopes on which the ancient and later walls of the Acropolis are partially supported was consolidated (1980-1993) with stainless steel anchorings and special injections. An extensive documentation program using modern technology is already underway on all the walls surrounding the Acropolis, using multiple recording methods of micro-movements, mainly at the carved stone-work of the ancient wall that shows evidence of cracks and erosion due to earthquakes and rainwater.

Finally, it is worth noting that in 2004 a lift for people with special needs was installed on the north side of the Acropolis.